理解HashMap

  • HashMap
  • ConcurrentHashMap
  • LinkedHashMap

HashMap

成员变量

1
2
3
4
5
6
7
8
9
10
11
12
13
//最大容量 2的30次方
static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;

//哈希桶,存放链表。 长度是2的N次方,或者初始化时为0.
transient Node<K,V>[] table;

//加载因子,用于计算哈希表元素数量的阈值。 threshold = 哈希桶.length * loadFactor;
final float loadFactor;
//哈希表内元素数量的阈值,当哈希表内元素数量超过阈值时,会发生扩容resize()。
int threshold;

桶个数的计算

在构造函数中传入了初始大小的话,会根据当前值计算hash桶的个数

1
2
3
4
5
6
7
8
9
10
11
12
//根据期望容量cap,返回2的n次方形式的 哈希桶的实际容量 length。 返回值一般会>=cap 
static final int tableSizeFor(int cap) {
//经过下面的 或 和位移 运算, n最终各位都是1。
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
//判断n是否越界,返回 2的n次方作为 table(哈希桶)的阈值
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

hash计算

1
2
3
4
5
HashMap: 
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

Node的hash值计算

1
2
3
4
5
HashMap#Node: 
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}

扩容

初始化或加倍哈希桶大小。如果是当前哈希桶是null,分配符合当前阈值的初始容量目标。
否则,因为我们扩容成以前的两倍。

在扩容时,要注意区分以前在哈希桶相同index的节点,现在是在以前的index里,还是index+oldlength 里

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
final Node<K,V>[] resize() {
//oldTab 为当前表的哈希桶
Node<K,V>[] oldTab = table;
//当前哈希桶的容量 length
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前的阈值
int oldThr = threshold;
//初始化新的容量和阈值为0
int newCap, newThr = 0;
//如果当前容量大于0
if (oldCap > 0) {
//如果当前容量已经到达上限
if (oldCap >= MAXIMUM_CAPACITY) {
//则设置阈值是2的31次方-1
threshold = Integer.MAX_VALUE;
//同时返回当前的哈希桶,不再扩容
return oldTab;
}//否则新的容量为旧的容量的两倍。
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//如果旧的容量大于等于默认初始容量16
//那么新的阈值也等于旧的阈值的两倍
newThr = oldThr << 1; // double threshold
}//如果当前表是空的,但是有阈值。代表是初始化时指定了容量、阈值的情况
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;//那么新表的容量就等于旧的阈值
else {}//如果当前表是空的,而且也没有阈值。代表是初始化时没有任何容量/阈值参数的情况 // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;//此时新表的容量为默认的容量 16
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);//新的阈值为默认容量16 * 默认加载因子0.75f = 12
}
if (newThr == 0) {//如果新的阈值是0,对应的是 当前表是空的,但是有阈值的情况
float ft = (float)newCap * loadFactor;//根据新表容量 和 加载因子 求出新的阈值
//进行越界修复
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//更新阈值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据新的容量 构建新的哈希桶
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//更新哈希桶引用
table = newTab;
//如果以前的哈希桶中有元素
//下面开始将当前哈希桶中的所有节点转移到新的哈希桶中
if (oldTab != null) {
//遍历老的哈希桶
for (int j = 0; j < oldCap; ++j) {
//取出当前的节点 e
Node<K,V> e;
//如果当前桶中有元素,则将链表赋值给e
if ((e = oldTab[j]) != null) {
//将原哈希桶置空以便GC
oldTab[j] = null;
//如果当前链表中就一个元素,(没有发生哈希碰撞)
if (e.next == null)
//直接将这个元素放置在新的哈希桶里。
//注意这里取下标 是用 哈希值 与 桶的长度-1 。 由于桶的长度是2的n次方,这么做其实是等于 一个模运算。但是效率更高
newTab[e.hash & (newCap - 1)] = e;
//如果发生过哈希碰撞 ,而且是节点数超过8个,转化成了红黑树(暂且不谈 避免过于复杂, 后续专门研究一下红黑树)
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果发生过哈希碰撞,节点数小于8个。则要根据链表上每个节点的哈希值,依次放入新哈希桶对应下标位置。
else { // preserve order
//因为扩容是容量翻倍,所以原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量
//低位链表的头结点、尾节点
Node<K,V> loHead = null, loTail = null;
//高位链表的头节点、尾节点
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;//临时节点 存放e的下一个节点
do {
next = e.next;
//这里又是一个利用位运算 代替常规运算的高效点: 利用哈希值 与 旧的容量,可以得到哈希值去模后,是大于等于oldCap还是小于oldCap,等于0代表小于oldCap,应该存放在低位,否则存放在高位
if ((e.hash & oldCap) == 0) {
//给头尾节点指针赋值
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}//高位也是相同的逻辑
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}//循环直到链表结束
} while ((e = next) != null);
//将低位链表存放在原index处,
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//将高位链表存放在新index处
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
  • 当前容量大于0且不超过最大值(1 << 30),扩容2倍
  • 如果当前表是空的,但是有阈值,那么新表的容量就等于旧的阈值
  • 如果当前表是空的,而且也没有阈值.新表的容量为默认的容量 16

扩容后赋值

先根据原有的桶,进行取值,形成新的链表。

如果原桶当前位置只有一个元素

1
2
//使用hashCode和新桶的容量进行位运算,且赋值
newTab[e.hash & (newCap - 1)] = e;

如果当前桶发生了hash碰撞,原链表上的每个节点,现在可能存放在原来的下标,即low位, 或者扩容后的下标,即high位。 high位= low位+原哈希桶容量。将低位链表存放在原index处,将高位链表存放在新index处 。

put操作

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//tab存放 当前的哈希桶, p用作临时链表节点
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果当前哈希表是空的,代表是初始化
if ((tab = table) == null || (n = tab.length) == 0)
//那么直接去扩容哈希表,并且将扩容后的哈希桶长度赋值给n
n = (tab = resize()).length;
//如果当前index的节点是空的,表示没有发生哈希碰撞。 直接构建一个新节点Node,挂载在index处即可。
//这里再啰嗦一下,index 是利用 哈希值 & 哈希桶的长度-1,替代模运算
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {//否则 发生了哈希冲突。
//e
Node<K,V> e; K k;
//如果哈希值相等,key也相等,则是覆盖value操作
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;//将当前节点引用赋值给e
else if (p instanceof TreeNode)//红黑树暂且不谈
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {//不是覆盖操作,则插入一个普通链表节点
//遍历链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {//遍历到尾部,追加新节点到尾部
p.next = newNode(hash, key, value, null);
//如果追加节点后,链表数量》=8,则转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
//如果找到了要覆盖的节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果e不是null,说明有需要覆盖的节点,
if (e != null) { // existing mapping for key
//则覆盖节点值,并返回原oldValue
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
//这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeAccess(e);
return oldValue;
}
}
//如果执行到了这里,说明插入了一个新的节点,所以会修改modCount,以及返回null。

//修改modCount
++modCount;
//更新size,并判断是否需要扩容。
if (++size > threshold)
resize();
//这是一个空实现的函数,用作LinkedHashMap重写使用。
afterNodeInsertion(evict);
return null;
}
  • 如果桶是空的,先初始化和扩容,并将元素放到计算的索引上
  • 如果当前index的节点是空的,表示没有发生哈希碰撞。 直接构建一个新节点Node,挂载在index处即可
  • 如果发生了hash冲突
    1. 如果哈希值相等,key也相等,则是覆盖value操作
    2. 遍历到尾部,追加新节点到尾部
    3. 修改modCount
    4. 判断是否要扩容

为什么是线程不安全的

在并发环境下,可能会形成环状链表(扩容时可能造成,具体原因自行百度google或查看源码分析),导致get操作时,cpu空转,所以,在并发环境中使用HashMap是非常危险的

为什么进行2倍扩容

树化

最小链表化阈值为 6

最大树化阈值为 8

hashMap 流程图

LinkedHashMap

集成自HashMap

1
2
3
4
5
6
7
8
9
10
11
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
//回调函数,新节点插入之后回调 , 根据evict 和 判断是否需要删除最老插入的节点。如果实现LruCache会用到这个方法。
void afterNodeRemoval(Node<K,V> p) { }
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e){ }

//LinkedHashMap 默认返回false 则不删除节点。 返回true 代表要删除最早的节点。通常构建一个LruCache会在达到Cache的上限是返回true
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}

类里有两个成员变量head tail,分别指向内部双向链表的表头、表尾。

1
2
3
4
5
6
7
8
9
10
//双向链表的头结点
transient LinkedHashMap.Entry<K,V> head;

//双向链表的尾节点
transient LinkedHashMap.Entry<K,V> tail;

//默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。
//为true时,可以在这基础之上构建一个LruCach
final boolean accessOrder;

LinkedHashMap重写了newNode(),在每次构建新节点时,通过linkNodeLast(p);将新节点链接在内部双向链表的尾部。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//在构建新节点时,构建的是`LinkedHashMap.Entry` 不再是`Node`.
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}
//将新增的节点,连接在链表的尾部
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
//集合之前是空的
if (last == null)
head = p;
else {//将新节点连接在链表的尾部
p.before = last;
last.after = p;
}
}

LruCache

LRU为Least Recently Used的缩写,意思也就是近期最少使用算法。LruCache将LinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除。

基于LinkedHashMap的LRUCache的实现,关键是重写LinkedHashMap的removeEldestEntry方法,在LinkedHashMap中该方法默认返回false(LRUCache本身未考虑线程安全的问题),这样此映射的行为将类似于正常映射,即永远不能移除最旧的元素。

ConcurrentHashMap